(9)/((7)x)-(1)/(x) - subtract fractions

(9)/((7)x)-(1)/(x) - step by step solution for the given fractions. Subtract fractions, full explanation.

If it's not what You are looking for just enter simple or very complicated fractions into the fields and get free step by step solution. Remember to put brackets in correct places to get proper solution.

    Solution for the given fractions

    • 9/(7*x) - 1/x = ?
    • The common denominator of the two fractions is: 7*x^2
    • 9/(7*x) = (9*x)/(7*x*x) = (9*x)/(7*x^2)
    • 1/x = (1*7*x)/(7*x*x) = (7*x)/(7*x^2)
    • Fractions adjusted to a common denominator
    • 9/(7*x) - 1/x = (9*x)/(7*x^2) - (7*x)/(7*x^2)
    • (9*x)/(7*x^2) - (7*x)/(7*x^2) = (9*x-(7*x))/(7*x^2)
    • (9*x-(7*x))/(7*x^2) = (2*x)/(7*x^2)
    • (2*x)/(7*x^2) = (2*x^-1)/7

    Solution for the given fractions

    $ \frac{9}{(7*x)} -\frac{ 1}{x }=? $

    The common denominator of the two fractions is: 7*x^2

    $ \frac{9}{(7*x)} = \frac{(9*x)}{(7*x*x)} = \frac{(9*x)}{(7*x^2)} $

    $ \frac{1}{x }= \frac{(1*7*x)}{(7*x*x)} = \frac{(7*x)}{(7*x^2)} $

    Fractions adjusted to a common denominator

    $ \frac{9}{(7*x)} -\frac{ 1}{x }= \frac{(9*x)}{(7*x^2)} - \frac{(7*x)}{(7*x^2)} $

    $ \frac{(9*x)}{(7*x^2)} - \frac{(7*x)}{(7*x^2)} = \frac{(9*x-(7*x))}{(7*x^2)} $

    $ \frac{(9*x-(7*x))}{(7*x^2)} = \frac{(2*x)}{(7*x^2)} $

    $ \frac{(2*x)}{(7*x^2)} = \frac{(2*x^-1)}{7} $

    $ $

    see mathematical notation

    You can always share this solution

    See similar equations:

    | (3x+14)/(5)+(x+54)/(7) - add fractions | | (10)/(1)/(9)/(5) - dividing of fractions | | (5)/(4)/(1)/(8) - dividing of fractions | | (9)/(7x)-(1)/(x) - subtraction of fractions | | (x)/(5)+(2)/(7) - addition of fractions | | (4)/(10)/(4)/(4) - divide fractions | | (3)/(4)+(1)/(7) - adding of fractions | | (75)/(100)/(75)/(75) - divide fractions | | (4)/(10)/(4)/(4) - dividing of fractions | | (4)/(10)*(4)/(4) - multiplication of fractions | | (4n^2+15)/(7m)-(2n^2+4)/(7m) - subtraction of fractions | | (-2)/(9)*(5)/(8) - multiplying of fractions | | (9)/(28)*(45)/(7) - multiplication of fractions | | (1)/(7)*(1)/(8) - multiply fractions | | (-10)/(1)/(1)/(9) - dividing of fractions | | (-5)/(6)/(-8)/(10) - dividing of fractions | | (5)/(11)/(9)/(22) - divide fractions | | (-5)/(6)+(-8)/(10) - add fractions | | (1)/(6)*(24)/(3) - multiplying of fractions | | (3)/(5)/(7)/(5) - dividing of fractions | | (8)/(3)/(8)/(3) - divide fractions | | (9)/(10)/(4)/(5) - dividing of fractions | | (4)/(5)*(2)/(12) - multiplication of fractions | | (-5)/(12)/(45)/(32) - dividing of fractions | | (3)/(18)-(7)/(13) - subtraction of fractions | | (2)/(15)-(2)/(12) - subtraction of fractions | | (1)/(16)-(6)/(16) - subtraction of fractions | | (t+5)/(10)+(t-3)/(10) - add fractions | | (5)/(16)+(7)/(18) - addition of fractions | | (5)/(16)-(7)/(18) - subtraction of fractions | | (6)/(16)-(1)/(11) - subtraction of fractions | | (21)/(19)/(14)/(33) - divide fractions | | (9)/(10)+(1)/(3) - addition of fractions | | (8)/(20)+(6)/(15) - adding of fractions | | (8)/(10)+(9)/(13) - addition of fractions | | (9)/(14)+(1)/(12) - addition of fractions | | (7)/(20)-(1)/(15) - subtract fractions | | (7)/(20)-(1)/(15) - subtraction of fractions | | (4)/(x)+(1)/(2) - adding of fractions | | (2)/(11)+(4)/(12) - adding of fractions | | (1)/(10)+(2)/(15) - add fractions | | (3.14)/(7)+(A)/(4) - addition of fractions | | (5)/(7)+(7)/(5) - addition of fractions | | (-3)/(7)/(3)/(7) - dividing of fractions | | (3)/(8)+(5)/(6) - adding of fractions | | (2)/(3)+(5)/(12) - add fractions | | (2)/(3)*(9)/(1) - multiplication of fractions | | (22)/(25)-(21)/(26) - subtraction of fractions | | (1)/(3)/(3)/(1) - dividing of fractions | | (8)/(14)-(7)/(15) - subtraction of fractions | | (y)/(5)-(5)/(y) - subtract fractions | | (x+1)/(2)+(3)/(4) - addition of fractions | | (10)/(33)+(3)/(8) - add fractions | | (2x/3)/(-x/4)+(-1/3)/(-1/2) - add fractions | | (3)/(10)+(13)/(16) - addition of fractions | | (4)/(3)*(6)/(20) - multiplying of fractions | | (2)/(3x)+(1)/(4) - addition of fractions | | (11)/(2)-(1)/(4) - subtract fractions | | (17)/(18)/(25)/(36) - divide fractions | | (37)/(32)-(5)/(8) - subtraction of fractions | | (7)/(16)+(23)/(32) - add fractions | | (3)/(20)-(3)/(10) - subtract fractions | | (7)/(15)+(7)/(30) - adding of fractions | | (2)/(5)-(2)/(1) - subtraction of fractions | | (2)/(5)-(2)/(2) - subtraction of fractions |


    Related pages


    find the prime factorization of 8prime factorization of 6480.452 as a percent10x squared30000 dollars in rupeesthe prime factorization of 105derivative of 3 cos xprime factorization of 735derivative calculator step by stepepedusimplify the square root of 147derivative of xe 2xprt calculatorderivatives sin cosprime factorization of 1521.375 fractionlog3 2xgcf of 54 and 144tan sqrt3bmx solutionprime factorization 104prime factorization for 120graph of 3xfraction adding and subtracting calculatorcos2x derivativehow do you write 999 in roman numeralsgraph y-2x 0easy maths solutionsfind the prime factorization of 83350xgraph of y tan xgraph of 5x1987 roman numerals90-17cos37what is the prime factorization of 2524fggreatest common factor of 657squared3t solutionspx12math step by step problem solverprime factorization of 450what is a prime factorization of 48and438-200common multiples of 9least common denominator calculator onlinecommon multiples of 10 and 15polynomial factoring calculator with stepsconverting percentages to decimalsprime factorization of 184common multiples of 5 and 7solve for p 2l 2wwhat is the prime factorization of 192prime factorization 35lcm of 12gcf of 42 and 661.4e0.875 in fraction70-45xp xqpv nrt for t4uvsin 5x cos 5x1972 roman numeralssin3x cos2x 02cos 2 x420 roman numerals1967 roman numerals650 in roman numerals4x 2y 8 033-103127-325.9 as a decimal54 prime factorizationsolve 3y-2 5what is the least common denominator calculator